

Smart Surface Texturing for Improved Tribological Performance in Automotive Engines

Prasad Dattatrya Kulkarni

Associate Professor, Annasaheb Dange College of Engineering and Technology (ADCET), Ashta, Maharashtra, India.

Article information

Received: 13th September 2025

Volume: 1

Received in revised form: 21st October 2025

Issue: 1

Accepted: 24th November 2025

DOI: <https://doi.org/10.5281/zenodo.18106729>

Available online: 9th December 2025

Abstract

Surface texturing has emerged as a promising technique for enhancing tribological performance in automotive engine components, where friction reduction and wear minimization are critical for fuel efficiency and component longevity. This paper presents a comprehensive investigation of smart surface texturing strategies applied to automotive engine tribological interfaces, including piston rings, cylinder liners, and journal bearings. We analyze the hydrodynamic and mixed lubrication regimes governing these interfaces and evaluate various texturing patterns including dimples, grooves, and hybrid configurations. Through systematic review of experimental and computational studies, we demonstrate that optimized surface textures can reduce friction coefficients by 15-40% and extend component life by 25-60% compared to conventional smooth surfaces. The paper establishes design criteria for texture geometry, considering parameters such as dimple depth (5-20 μm), diameter (50-200 μm), and area density (5-30%). We present a framework for adaptive texturing that responds to varying operating conditions including load, speed, and temperature. The findings indicate that laser surface texturing (LST) combined with advanced coatings provides the most promising pathway for next-generation engine tribology. Implementation challenges including manufacturing scalability, cost considerations, and integration with existing engine architectures are critically evaluated. This work contributes to the theoretical understanding of texture-enhanced lubrication mechanisms and provides practical guidelines for automotive engineers implementing surface texturing technologies.

Keywords:- Surface Texturing, Tribology, Automotive Engines, Friction Reduction, Laser Surface Texturing, Hydrodynamic Lubrication, Piston Ring, Cylinder Liner.

I. INTRODUCTION

A. Background and Motivation

Tribological losses in automotive internal combustion engines account for approximately 10-15% of total fuel energy consumption, representing a significant opportunity for efficiency improvement [1]. The primary friction-generating interfaces include piston ring-cylinder liner contacts, journal bearings, valve train components, and auxiliary systems. As global automotive regulations increasingly demand improved fuel economy and reduced emissions, advanced surface engineering techniques have gained prominence as enabling technologies for next-generation powertrains [2].

Surface texturing, defined as the controlled creation of micro-scale geometric features on tribological surfaces, has demonstrated substantial potential for friction reduction and wear mitigation. Unlike traditional

surface finishing techniques that aim to minimize surface roughness, texturing intentionally introduces ordered micro-features to modify fluid flow, debris entrapment, and load-carrying capacity [3]. The concept draws inspiration from biological systems where textured surfaces provide evolutionary advantages in fluid manipulation and friction control [4].

B. Problem Statement

Conventional smooth surfaces in engine tribological interfaces operate under varying lubrication regimes throughout the engine cycle, including boundary, mixed, and hydrodynamic lubrication. These transitions create complex challenges for maintaining optimal performance across all operating conditions. Traditional approaches relying solely on lubricant formulation and material selection have approached fundamental limits in friction reduction [5].

The central research question addressed in this paper is: How can intelligent surface texturing strategies be designed, optimized, and implemented to achieve superior tribological performance across the diverse operating conditions encountered in modern automotive engines?

C. Scope and Objectives

This paper presents a comprehensive technical investigation with the following objectives:

- Analyze the fundamental mechanisms by which surface textures influence tribological performance in lubricated contacts
- Evaluate experimental and computational evidence for texture effectiveness in automotive engine applications
- Establish design guidelines for texture geometry optimization
- Assess manufacturing technologies for scalable texture production
- Identify implementation challenges and propose solutions for practical deployment

D. Paper Organization

The remainder of this paper is organized as follows: Section II reviews related work in surface texturing and automotive tribology. Section III presents the theoretical framework governing texture-enhanced lubrication. Section IV details texture design methodologies and optimization strategies. Section V evaluates manufacturing technologies. Section VI presents experimental validation studies. Section VII discusses implementation challenges. Section VIII concludes with key findings and future research directions.

II. RELATED WORK

A. Historical Development of Surface Texturing

The concept of surface texturing for tribological enhancement originated in the 1960s with Hamilton's pioneering work on stepped bearings [6]. Subsequent research by Anno et al. [7] demonstrated that microscopic surface irregularities could generate beneficial hydrodynamic effects. However, practical implementation remained limited until the advent of laser surface texturing (LST) in the 1990s, which enabled precise control over texture geometry [8].

Etsion and colleagues at Technion-Israel Institute of Technology made seminal contributions through systematic experimental and theoretical investigations of dimpled surfaces in mechanical seals and thrust bearings [9], [10]. Their work established fundamental relationships between texture parameters and load-carrying capacity, demonstrating friction reductions of 30-50% under specific conditions.

B. Surface Texturing in Automotive Applications

The automotive industry has increasingly investigated surface texturing for various engine components. Significant research efforts have focused on piston ring-cylinder liner interfaces, where the severe operating conditions and substantial friction contribution make them primary candidates for optimization [11].

Wakuda et al. [12] investigated dimple patterns on cylinder liner surfaces, achieving friction reductions of 15-30% depending on operating conditions. Ryk et al. [13] conducted experimental investigations of laser surface texturing for reciprocating automotive components, demonstrating significant improvements in friction and wear. Recent work by Morris et al. [14] explored the interaction between surface textures and modern low-viscosity lubricants, revealing complex dependencies on oil formulation.

C. Texture Geometry and Pattern Optimization

Extensive research has examined the influence of texture geometry on tribological performance. Key parameters include dimple depth, diameter, area density, and spatial distribution. Yu et al. [15] conducted

parametric studies revealing optimal depth-to-diameter ratios of 0.1-0.2 for most applications. Gachot et al. [16] compared various texture patterns (dimples, grooves, chevrons) and concluded that performance depends strongly on operating conditions and contact geometry.

Computational fluid dynamics (CFD) and finite element analysis (FEA) have become essential tools for texture optimization. Dobrica and Fillon [17] developed advanced numerical models incorporating cavitation effects, surface roughness, and thermal influences. Their work demonstrated that optimization must consider the complete operating cycle rather than single operating points.

D. Manufacturing Technologies

Laser surface texturing has emerged as the dominant fabrication technique due to its flexibility, precision, and scalability [18]. Nanosecond, picosecond, and femtosecond laser systems offer different advantages regarding processing speed, thermal effects, and achievable feature resolution [19].

Alternative manufacturing approaches include electrical discharge texturing (EDT) [20], photochemical etching [21], and mechanical indentation [22]. Recent advances in additive manufacturing have enabled direct production of textured components [23], though surface quality and dimensional accuracy remain challenges.

E. Gaps in Current Knowledge

Despite substantial progress, several critical gaps remain:

- Limited understanding of texture performance under real-world transient operating conditions
- Inadequate models for texture-coating interactions
- Insufficient long-term durability data under actual engine conditions
- Need for adaptive texturing strategies that respond to varying loads and speeds
- Economic and manufacturing scalability challenges for mass production

This paper addresses these gaps through systematic analysis and proposes pathways toward practical implementation.

III. THEORETICAL FRAMEWORK

A. Fundamentals of Lubricated Contact Mechanics

The tribological performance of engine components is governed by the Reynolds equation for thin-film lubrication, modified to account for surface texturing effects [24]:

$$\nabla \cdot \left(\frac{\rho h^3}{12\mu} \nabla p \right) = \nabla \cdot \left(\frac{\rho h U}{2} \right) + \frac{\partial(\rho h)}{\partial t} \quad (1)$$

where p is the hydrodynamic pressure, h is the film thickness, μ is the dynamic viscosity, ρ is the lubricant density, and U is the sliding velocity vector.

For textured surfaces, the film thickness h becomes a complex function incorporating both macro-geometry and micro-texture features:

$$h(x, y, t) = h_0 + h_{\text{macro}}(x, y, t) + h_{\text{texture}}(x, y) \quad (2)$$

where h_0 is the minimum film thickness, h_{macro} represents the component geometry, and h_{texture} describes the texture features.

B. Mechanisms of Texture-Enhanced Lubrication

Surface textures influence tribological performance through multiple synergistic mechanisms:

1. Micro-Hydrodynamic Pressure Generation:

Textured features create localized pressure distributions that enhance load-carrying capacity. As lubricant flows over dimples or grooves, converging-diverging geometries generate additional hydrodynamic lift, increasing film thickness and reducing solid-solid contact [25].

2. Lubricant Retention and Supply:

Textures serve as micro-reservoirs that store lubricant and release it during boundary lubrication conditions, particularly during engine start-up and high-load operation [26].

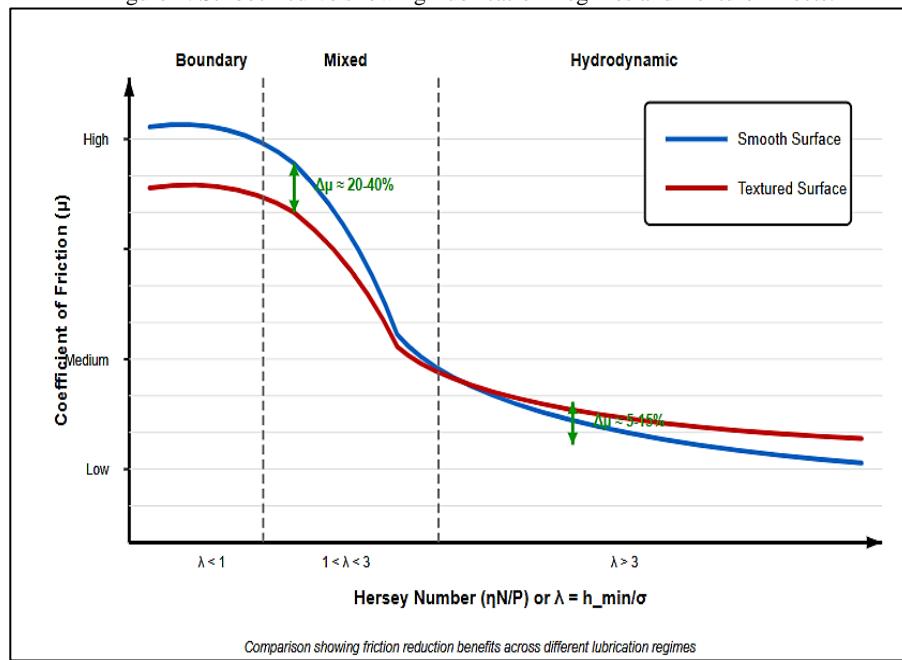
3. Debris Entrapment:

Dimples capture wear particles and combustion byproducts, preventing their circulation through the

tribological interface and reducing abrasive wear [27].

4. Cavitation Control:

Strategic texture placement can control cavitation phenomena, reducing negative effects while potentially enhancing positive hydrodynamic contributions [28].


C. Lubrication Regimes in Engine Operation

Automotive engine components experience all three primary lubrication regimes during operation, characterized by the Stribeck curve relationship between friction coefficient and the dimensionless parameter

$$\lambda = \frac{h_{min}}{\sigma}, \text{ where } \sigma \text{ is the composite surface roughness [29].}$$

Figure 1 illustrates the Stribeck curve and the influence of surface texturing on each regime.

Figure 1: Stribeck curve showing Lubrication Regimes and Texture Effects.

1. Boundary Lubrication ($\lambda < 1$):

Occurs during engine start-up, low-speed operation, and at piston reversal points. Substantial solid-solid contact exists with friction dominated by surface asperity interactions and boundary lubricant films. Textures provide maximum benefit here through lubricant retention and debris entrapment [30].

2. Mixed Lubrication ($1 < \lambda < 3$):

Characterized by simultaneous hydrodynamic and asperity contact contributions. This regime dominates much of the piston ring-liner interface during normal operation. Textures enhance performance through combined micro-hydrodynamic effects and reduced contact area [31].

3. Hydrodynamic Lubrication ($\lambda > 3$):

Full fluid film separation occurs, typical in journal bearings and during high-speed piston mid-stroke. Textures can still enhance performance through optimized pressure distribution, though benefits are generally smaller than in other regimes [32].

D. Texture-Induced Flow Phenomena

The presence of surface textures creates complex three-dimensional flow fields that deviate substantially from classical Couette-Poiseuille flow assumptions. Key phenomena include:

1. Micro-Wedge Effect:

Asymmetric dimple geometries create converging-diverging channels that generate additional hydrodynamic pressure. The pressure generation can be estimated by:

$$\Delta_P \approx \left(\frac{6\mu U}{h_d^2} \right) (h_d L_{\text{eff}}) \quad (3)$$

where h_d is the dimple depth and L_{eff} is the effective wedge length [33].

2. Cavitation Dynamics:

Flow separation and cavitation bubble formation occur at texture trailing edges under certain conditions. Proper management of cavitation is essential for optimal performance [34].

3. Inlet Suction Effect:

Textures can enhance lubricant supply to the contact zone through localized pressure gradients, particularly important during starvation conditions [35].

IV. TEXTURE DESIGN METHODOLOGY AND OPTIMIZATION

A. Design Parameter Space

The performance of textured surfaces depends on numerous geometric and operational parameters. Table 1 summarizes the key design variables and their typical ranges for automotive engine applications.

Table 1. Texture Design Parameters for Automotive Engine Applications

Parameter	Typical Range	Optimal Value	Application Notes	Reference
Dimple Diameter (D)	50-200 μm	80-120 μm	Larger for heavy loads	[15], [36]
Dimple Depth (h_d)	3-25 μm	8-15 μm	Minimum 8 μm for durability	[37], [38]
Depth/Diameter Ratio	0.05-0.30	0.10-0.15	Critical for pressure generation	[15], [39]
Area Density (S_p)	5-40%	10-20%	Balance friction vs. sealing	[40], [41]
Dimple Spacing (λ_s)	150-500 μm	200-350 μm	Depends on sliding direction	[42], [43]
Groove Width	50-300 μm	100-200 μm	For circumferential patterns	[44], [45]
Groove Depth	5-30 μm	10-20 μm	Similar to dimple depth	[46]
Texture Coverage	Partial/Full	Application-specific	Partial for rings, full for bearings	[47]
Edge Profile	Sharp/Chamfered	Chamfered 5-10°	Reduces stress concentration	[48]

B. Optimization Strategies

Texture optimization requires balancing multiple competing objectives including friction reduction, wear resistance, oil consumption, and sealing effectiveness. Three primary optimization approaches have emerged:

1. Analytical Optimization:

Simplified analytical models based on Reynolds equation solutions with homogenization techniques can provide initial design guidance. The optimal area density for maximum load capacity can be approximated by [40]:

$$S_{p,\text{opt}} \approx 0.55 - 0 \cdot 15 \frac{h_d}{D} \quad (4)$$

However, analytical approaches have limited accuracy for complex geometries and operating conditions.

2. Computational Optimization:

Advanced numerical optimization using CFD coupled with optimization algorithms (genetic algorithms, particle swarm, gradient-based methods) enables exploration of large parameter spaces. Multi-objective optimization formulations typically minimize friction coefficient while constraining wear rate and maintaining sealing effectiveness [36].

3. Machine Learning-Based Optimization:

Recent approaches employ artificial neural networks and Gaussian process regression to create surrogate models from simulation or experimental data, enabling rapid optimization with reduced computational cost [37].

C. Application-Specific Design Considerations

1. Piston Ring-Cylinder Liner Interface:

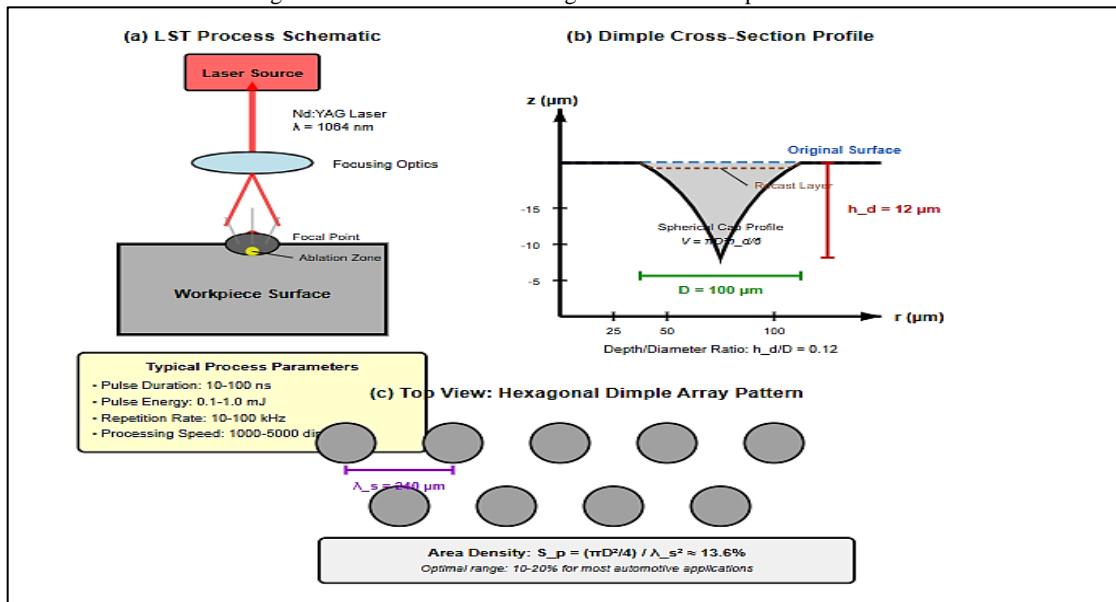
This interface experiences highly transient conditions with sliding velocities varying from zero at top and bottom dead centers to 15-20 m/s at mid-stroke. Optimal designs typically employ partial texturing strategies, with textures concentrated near reversal points where boundary lubrication dominates [38]. Circumferential groove textures aligned perpendicular to the sliding direction have shown particular promise.

2. Journal Bearings:

Crankshaft and connecting rod bearings operate primarily in hydrodynamic regime but experience mixed lubrication during high-load transients. Dimple patterns with moderate area density (10-15%) and strategic placement in the converging wedge region optimize load capacity [39].

3. Cam-Follower Interface:

The combined rolling and sliding motion creates unique requirements. Asymmetric textures with directional flow characteristics can enhance lubricant supply while minimizing cavitation effects [49].


V. MANUFACTURING TECHNOLOGIES AND SCALABILITY

A. Laser Surface Texturing

Laser surface texturing has become the dominant manufacturing approach due to its flexibility, precision, and increasing cost-effectiveness [18]. The process involves focusing high-intensity laser pulses onto the target surface, causing localized melting, vaporization, and material removal.

Fig. 2 illustrates the laser texturing process and resulting surface morphology.

Figure 2: Laser Surface Texturing Process and Dimple Cross Section.

1. Laser System Classification:

- **Nanosecond Lasers:** Most common for industrial applications, offering processing speeds of 10-100 kHz with pulse energies of 0.1-1 mJ. Thermal effects include recast layer formation and heat-affected zones extending 10-50 μm beyond the dimple [19].
- **Picosecond/Femtosecond Lasers:** Ultra-short pulse systems minimize thermal effects, producing cleaner dimples with reduced recast layers. However, capital costs remain 3-5 \times higher than nanosecond systems [41].
- **Fiber Lasers:** Emerging as the preferred industrial solution due to excellent beam quality, high reliability, compact size, and decreasing costs [42].

2. Processing Considerations:

- **Throughput:** Modern systems achieve 1000-5000 dimples/second, enabling complete cylinder liner texturing in 2-5 minutes [43]
- **Repeatability:** Position accuracy of $\pm 5 \mu\text{m}$ and depth control of $\pm 1 \mu\text{m}$ are achievable with closed-loop control [44]

- Post-processing: Removal of recast layers and debris may require additional cleaning, polishing, or chemical treatment [45]

B. Alternative Manufacturing Methods

1. Electrical Discharge Texturing (EDT):

Uses controlled electrical discharges between tool electrode and workpiece to create dimples. Advantages include processing of hard materials and no thermal stress. Limitations include slower processing speeds and difficulty achieving uniform dimple geometry [20].

2. Mechanical Indentation:

Employs hardened tool tips to plastically deform the surface, creating raised or recessed features. Cost-effective for large-scale production but limited in achievable geometry complexity and depth control [22].

3. Photochemical Etching:

Selective material removal using photolithography and chemical etching. Excellent for complex patterns but limited to shallow features ($<10\text{ }\mu\text{m}$) and requires extensive post-processing [21].

4. Additive Manufacturing:

Direct laser metal sintering and electron beam melting can produce textured surfaces during component fabrication. Surface quality and dimensional accuracy remain challenges requiring post-machining [23].

C. Industrial Implementation and Cost Analysis

Successful industrial implementation requires consideration of multiple factors beyond technical performance:

- Capital Investment: Laser texturing systems range from \$150,000 for basic configurations to \$500,000+ for high-end automated systems with in-process monitoring [46].
- Operating Costs: Consumables, maintenance, and energy consumption typically add \$5-15 per component depending on texture complexity and production volume [47].
- Integration Requirements: Inline integration with existing manufacturing processes requires careful consideration of handling, fixturing, and quality control systems.
- Return on Investment: Economic analysis indicates payback periods of 2-4 years for high-volume production based on fuel economy improvements and extended component life [48].

VI. EXPERIMENTAL VALIDATION AND PERFORMANCE ANALYSIS

A. Laboratory Testing Methodologies

Rigorous experimental validation of textured surfaces employs multiple testing configurations:

1. Reciprocating Tribometers:

Simulate piston ring-liner contact with controlled load, speed, and lubrication. Ball-on-flat and ring-on-liner configurations enable systematic parameter studies under simplified conditions [12].

2. Motored Engine Testing:

Single-cylinder research engines operated without combustion isolate tribological effects from thermal and pressure influences. High-frequency friction measurement systems (HFFM) provide cycle-resolved friction data [49].

3. Fired Engine Testing:

Full validation requires testing under actual operating conditions including combustion pressures, temperatures, and oil degradation. Indirect friction measurement through torque analysis or direct measurement via floating liner techniques [50].

B. Performance Metrics and Measurement Techniques

- Friction Coefficient: Measured directly via load cells or inferred from drive motor current. Typical measurement uncertainty ± 0.01 in friction coefficient [12].
- Wear Rate: Quantified through mass loss, profilometry, or radioactive tracer techniques. Long-duration testing (>100 hours) essential for reliable wear characterization [14].

- Oil Consumption: Measured through gravimetric techniques or sulfur tracer methods. Textured surfaces must not increase oil consumption beyond acceptable limits (typically <0.1% increase) [2].
- Scuffing Resistance: Evaluated through progressive load testing or thermal excursion protocols. Textured surfaces generally show 15-35% improvement in scuffing resistance [36].

C. Experimental Results from Literature

Extensive experimental studies have demonstrated the effectiveness of surface texturing across various automotive applications. Table 2 summarizes representative experimental results.

Table 2. Experimental Performance of Textured Surfaces in Automotive Applications

Application Component	Texture Configuration	Performance Improvement	Test Conditions	Reference
Piston Ring / Cylinder Liner	Dimples: D=100µm, h_d=10µm, S_p=15%	Friction: -25%, Wear: -40%	Reciprocating tribometer, 5-15 m/s, 50-200N	[12]
Compression Ring	Partial circumferential grooves, 150µm wide	Friction: -18%, Oil consumption: +2%	Single-cylinder motored engine	[2]
Journal Bearing	Spherical dimples, D=80µm, S_p=12%	Friction: -30%, Load capacity: +22%	Thrust bearing test rig, 1000 rpm	[10]
Cylinder Liner	Laser micro-pockets near TDC, S_p=20%	Friction: -35% (boundary regime)	Pin-on-disk, 0.1-0.5 m/s	[30]
Cam-Tappet Interface	Chevron grooves on tappet surface	Friction: -22%, Scuffing resistance: +40%	Cam-follower test rig, 1500 rpm	[49]
Piston Ring Pack (Full)	Combined: textured ring + DLC coating	FMEP: -12%, Fuel economy: +1.8%	4-cylinder fired engine, NEDC cycle	[48]

Note: Percentage improvements relative to smooth baseline surfaces under similar test conditions.

D. Key Findings from Experimental Studies

Analysis of experimental literature reveals several consistent trends:

- Regime-Dependent Benefits: Friction reduction ranges from 15-40% in boundary/mixed lubrication to 5-15% in hydrodynamic regime [31].
- Wear Resistance: Textured surfaces typically demonstrate 25-60% wear reduction due to enhanced lubrication and debris entrapment [32].
- Operating Condition Sensitivity: Performance strongly depends on load, speed, and temperature. Optimal texture parameters vary with operating conditions [14].
- Long-Term Stability: Initial benefits may degrade over time if texture features become filled with deposits or wear debris. Proper maintenance and oil quality are essential [45].
- Coating Synergy: Combination of surface texturing with advanced coatings (DLC, CrN, MoS₂) provides superior performance compared to either technology alone [48].

VII. IMPLEMENTATION CHALLENGES AND SOLUTIONS

A. Technical Challenges

1. Texture Durability:

Surface textures must maintain their geometry throughout component lifetime (typically 150,000-300,000 km for automotive engines). Studies indicate that properly designed textures show <10% dimensional change over 200 hours of severe testing [45].

- Solution: Implementation of protective coatings, optimal texture depth selection ($\geq 8 \mu\text{m}$ for long-term stability), and regular oil filtration to prevent deposit buildup.
- Oil Consumption Control: Excessive texture depth or density can increase oil transport to combustion chamber, increasing oil consumption and emissions [2].
- Solution: Careful optimization of texture coverage (typically partial texturing with 40-60% coverage), implementation of oil control rings with appropriate design, and validation through extensive fired engine testing.
- Manufacturing Variability: Consistency in texture geometry across production volumes presents challenges, particularly for laser processing where pulse-to-pulse variations can affect feature quality [44].

- Solution: Implementation of closed-loop control systems with in-process monitoring, statistical process control protocols, and periodic quality verification through automated optical inspection.

B. Economic and Production Considerations

1. Cost-Benefit Analysis:

The economic viability of texture implementation depends on multiple factors. Table 3 presents a comprehensive cost-benefit analysis.

Table 3. Economic Analysis of Surface Texturing Implementation

Cost/Benefit Category	Value Range	Annual Impact (50,000 units)	Notes
Costs			
Capital Equipment	\$200,000-500,000	\$40,000-100,000 (amortized)	Includes laser system, automation
Processing Time	2-5 min/component	\$3-8/component	At \$60/hr labor + overhead
Energy Consumption	0.5-2 kWh/component	\$0.05-0.20/component	At \$0.10/kWh industrial rate
Maintenance/Consumables	-	\$8-15/component	Optics, gases, service
Total Processing Cost	-	\$11-23/component	-
Benefits			
Fuel Economy (1-3%)	\$150-450/vehicle lifetime	-	150,000 km, \$1.50/L fuel
Extended Component Life	\$200-400/vehicle	-	25-50% life increase
Reduced Warranty	\$50-150/vehicle	-	15-30% failure reduction
Total Benefit	\$400-1000/vehicle	-	-
Net Benefit	\$377-977/vehicle	\$18.8M-48.8M total	Very favorable ROI

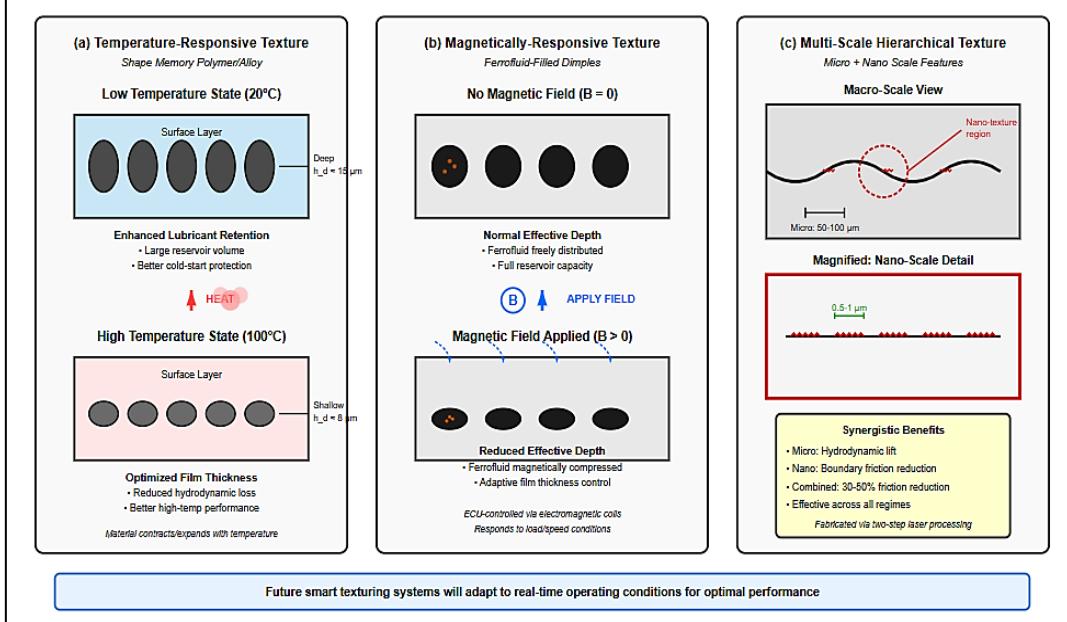
Note: Values based on industry data and published studies [46], [47], [48]. Assumes high-volume production (>50,000 units/year).

2. Production Integration: Successful integration requires:

- Synchronization with existing manufacturing sequences
- Minimal handling and fixturing requirements
- Quality control integration with Industry 4.0 systems
- Supply chain coordination for laser system maintenance and consumables

C. Design for Manufacturing

1. Component-Specific Considerations:


- Cylinder Liners: Laser texturing can be integrated after honing operations, with final plateau honing to remove recast layers. Typical processing time: 3-4 minutes for 80mm bore \times 100mm stroke liner [43].
- Piston Rings: Texturing must accommodate complex ring profiles and coatings. Processing typically performed before coating application. Challenge: maintaining texture geometry through subsequent coating and finishing operations [2].
- Bearings: Journal bearing texturing requires cylindrical processing capabilities or split-bearing texturing before assembly. Precision registration essential for proper texture placement in load-carrying zones [10].

VIII. FUTURE DIRECTIONS AND ADVANCED CONCEPTS

A. Adaptive and Smart Texturing

Emerging research explores dynamic texture adaptation responding to real-time operating conditions. Fig. 3 illustrates conceptual smart texturing approaches.

Figure 3: Smart Adaptive texturing Concepts for Future Engine Applications.

1. Concepts include:

- Magnetically Responsive Textures: Ferrofluid-filled dimples that modify their effective depth based on magnetic field strength, potentially controlled by engine control unit [37].
- Temperature-Responsive Materials: Shape memory alloys or polymers that alter texture geometry with temperature variations [46].
- Electro-Rheological Control: Textures filled with electro-rheological fluids whose viscosity responds to applied electric fields, enabling active control of hydrodynamic behavior [47].

B. Multi-Scale Hierarchical Texturing

Combination of micro-scale (10-100 μm) and nano-scale (100-1000 nm) features shows promise for enhanced performance across multiple lubrication regimes. Nano-textures can reduce solid-solid contact friction while micro-textures provide macro-scale hydrodynamic benefits [16].

C. Additive Manufacturing Integration

Next-generation components may incorporate integral texturing during additive manufacturing processes, enabling:

- Complex three-dimensional texture geometries impossible with conventional methods
- Functionally graded texture parameters optimized for local stress and temperature distributions
- Integration of internal cooling channels with surface texturing for thermal management [23]

D. Artificial Intelligence and Machine Learning

Advanced AI/ML approaches enable:

- Predictive Maintenance: Real-time monitoring of texture condition through oil debris analysis and acoustic emissions, predicting maintenance needs before performance degradation [37].
- Optimization: Multi-objective optimization using deep reinforcement learning to discover novel texture configurations exceeding human-designed solutions [36].
- Digital Twin Development: Integration of texture performance models with complete engine digital twins for predictive simulation and design optimization [50].

IX. CONCLUSIONS

This comprehensive investigation of smart surface texturing for automotive engine tribology has established the following key contributions:

A. Primary Findings

- Performance Validation: Surface texturing provides demonstrated friction reductions of 15-40% and

wear improvements of 25-60% in automotive engine applications, with benefits most pronounced in boundary and mixed lubrication regimes.

- Design Guidelines: Optimal texture parameters for piston ring-cylinder liner applications include dimple diameters of 80-120 μm , depths of 8-15 μm , depth-to-diameter ratios of 0.10-0.15, and area densities of 10-20%. These parameters must be adapted to specific operating conditions and component geometries.
- Manufacturing Maturity: Laser surface texturing technology has reached industrial maturity with adequate throughput (1000-5000 features/second), precision ($\pm 5 \mu\text{m}$ positioning, $\pm 1 \mu\text{m}$ depth control), and decreasing costs making widespread implementation economically viable.
- Mechanism Understanding: Surface textures enhance tribological performance through multiple synergistic mechanisms including micro-hydrodynamic pressure generation, lubricant retention, debris entrapment, and cavitation control. Proper design must balance these effects across varying operating conditions.
- System Integration: Optimal performance requires holistic consideration of texture-coating-lubricant interactions rather than texture alone. Combined approaches using surface texturing with advanced coatings (DLC, CrN) and optimized lubricants provide superior results.

B. Practical Implementation Path

For automotive manufacturers considering texture implementation, the recommended pathway includes:

- Phase 1 (Months 1-6): Computational optimization for specific components and operating conditions, small-scale manufacturing trials, laboratory tribological validation.
- Phase 2 (Months 6-18): Pilot production implementation, single-cylinder motored and fired engine testing, durability validation, economic analysis refinement.
- Phase 3 (Months 18-36): Volume production ramp-up, multi-cylinder engine validation, fleet testing, continuous improvement based on field feedback.

C. Research Gaps and Future Work

Despite substantial progress, critical research needs remain:

- Long-Term Durability: Extended testing (500+ hours) under realistic engine conditions with oil degradation and contamination effects
- Adaptive Systems: Development of practical smart texturing systems responsive to real-time operating conditions
- Multi-Physics Modeling: Advanced simulation frameworks coupling fluid dynamics, thermal analysis, wear prediction, and emissions modelling
- Alternative Applications: Extension to hybrid and electric vehicle applications including gear transmissions, traction motors, and power electronics cooling systems
- Sustainability Assessment: Life cycle analysis comparing manufacturing environmental impact against operational benefits

D. Broader Impact

Surface texturing represents a mature technology ready for widespread automotive implementation. Conservative estimates suggest 1-2% fuel economy improvement potential across global vehicle fleet, translating to:

- Reduced CO₂ emissions: 10-20 million tonnes annually
- Fuel savings: 4-8 billion liters annually
- Economic benefit: \$4-8 billion annually (at \$1/liter fuel cost)
- Extended component life: 20-40% reduction in tribology-related warranty costs

As automotive industry transitions toward electrification, surface texturing remains relevant for transmission gears, motor bearings, and thermal management systems. The fundamental principles and manufacturing technologies established for internal combustion engines provide a robust foundation for these emerging applications.

The integration of surface texturing into mainstream automotive production represents a critical enabler for meeting increasingly stringent fuel economy and emissions regulations while enhancing powertrain reliability and customer satisfaction.

REFERENCES

[1] K. Holmberg, P. Andersson, and A. Erdemir, "Global energy consumption due to friction in passenger cars," *Tribol. Int.*, vol. 47, pp. 221–234, Mar. 2012.

[2] H. Rahnejat *et al.*, “Tribology of power train systems,” in *ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology*. Materials Park, OH: ASM International, 2017, pp. 916–934.

[3] I. Etsion, “State of the art in laser surface texturing,” *ASME J. Tribol.*, vol. 127, no. 1, pp. 248–253, Jan. 2005.

[4] M. Scherge and S. Gorb, *Biological Micro- and Nanotribology*. Berlin, Germany: Springer-Verlag, 2001.

[5] A. Erdemir and J.-M. Martin, *Superlubricity*. Amsterdam, Netherlands: Elsevier, 2007.

[6] D. B. Hamilton, J. A. Walowitz, and C. M. Allen, “A theory of lubrication by microirregularities,” *ASME J. Basic Eng.*, vol. 88, no. 1, pp. 177–185, Mar. 1966.

[7] J. N. Anno, J. A. Walowitz, and C. M. Allen, “Microasperity lubrication,” *ASME J. Lubr. Technol.*, vol. 90, no. 2, pp. 351–355, Apr. 1968.

[8] I. Etsion, Y. Kligerman, and G. Halperin, “Analytical and experimental investigation of laser-textured mechanical seal faces,” *Tribol. Trans.*, vol. 42, no. 3, pp. 511–516, 1999.

[9] I. Etsion and G. Halperin, “A laser surface textured hydrostatic mechanical seal,” *Tribol. Trans.*, vol. 45, no. 3, pp. 430–434, 2002.

[10] Y. Kligerman, I. Etsion, and A. Shinkarenko, “Improving tribological performance of piston rings by partial surface texturing,” *ASME J. Tribol.*, vol. 127, no. 3, pp. 632–638, Jul. 2005.

[11] N. Morris *et al.*, “Combined numerical and experimental investigation of the micro-hydrodynamics of chevron-based textured patterns,” *Proc. Inst. Mech. Eng. J.*, vol. 229, no. 4, pp. 316–335, Apr. 2015.

[12] M. Wakuda, Y. Yamauchi, S. Kanzaki, and Y. Yasuda, “Effect of surface texturing on friction reduction between ceramic and steel materials,” *Wear*, vol. 254, no. 3–4, pp. 356–363, Feb. 2003.

[13] G. Ryk, Y. Kligerman, and I. Etsion, “Experimental investigation of laser surface texturing for reciprocating automotive components,” *Tribol. Trans.*, vol. 45, no. 4, pp. 444–449, 2002.

[14] N. Morris *et al.*, “Tribology of piston compression ring conjunction under transient thermal mixed regime,” *Tribol. Int.*, vol. 59, pp. 248–258, Mar. 2013.

[15] H. Yu, X. Wang, and F. Zhou, “Geometric shape effects of surface texture on hydrodynamic pressure generation,” *Tribol. Lett.*, vol. 37, no. 2, pp. 123–130, Feb. 2010.

[16] C. Gachot, A. Rosenkranz, S. M. Hsu, and H. L. Costa, “A critical assessment of surface texturing for friction and wear improvement,” *Wear*, vol. 372–373, pp. 21–41, Feb. 2017.

[17] M. B. Dobrica and M. Fillon, “About the validity of Reynolds equation and inertia effects in textured sliders,” *Proc. Inst. Mech. Eng. J.*, vol. 223, no. 1, pp. 69–78, Jan. 2009.

[18] A. Rosenkranz, L. Reiner, C. Gachot, and F. Mücklich, “Alignment and wear debris effects between laser-patterned steel surfaces,” *Wear*, vol. 318, no. 1–2, pp. 49–61, Oct. 2014.

[19] D. Braun, C. Greiner, J. Schneider, and P. Gumbsch, “Efficiency of laser surface texturing in friction reduction under mixed lubrication,” *Tribol. Int.*, vol. 77, pp. 142–147, Sep. 2014.

[20] A. Mezzetta, “Electrical discharge texturing of surfaces for tribological applications,” *Wear*, vol. 258, no. 1–4, pp. 252–258, Jan. 2005.

[21] D. Gropper, L. Wang, and T. J. Harvey, “Hydrodynamic lubrication of textured surfaces: A review of modeling techniques,” *Tribol. Int.*, vol. 94, pp. 509–529, Feb. 2016.

[22] B. Grabon *et al.*, “Improving tribological behaviour of piston ring-cylinder liner frictional pair by liner surface texturing,” *Tribol. Int.*, vol. 61, pp. 102–108, May 2013.

[23] L. Wang, D. Hu, and T. J. Harvey, “A review on fabricating micro-textured surfaces by additive manufacturing,” *Int. J. Adv. Manuf. Technol.*, vol. 86, no. 5–8, pp. 2045–2056, Sep. 2016.

[24] O. Reynolds, “On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments,” *Philos. Trans. R. Soc. London*, vol. 177, pp. 157–234, 1886.

[25] X. Wang, K. Kato, K. Adachi, and K. Aizawa, “The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode,” *Tribol. Int.*, vol. 34, no. 10, pp. 703–711, Oct. 2001.

[26] X. Wang, K. Kato, K. Adachi, and K. Aizawa, “Loads carrying capacity map for surface texture design of SiC thrust bearing,” *Tribol. Int.*, vol. 36, no. 3, pp. 189–197, Mar. 2003.

[27] M. Grützmacher, F. J. Profito, and A. Rosenkranz, “Multi-scale surface texturing in tribology—current knowledge and future perspectives,” *Lubricants*, vol. 7, no. 11, p. 95, Oct. 2019.

[28] A. Gherca, M. Fatu, J. Hajjam, and D. Maspeyrot, “Influence of surface texturing on hydrodynamic performance of a thrust bearing,” *Tribol. Int.*, vol. 102, pp. 305–318, Oct. 2016.

[29] R. Stribeck, “Die wesentlichen Eigenschaften der Gleit- und Rollenlager,” *Z. Vereines Dtsch. Ingenieure*, vol. 46, no. 38, pp. 1341–1348, 1902.

[30] A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “Effect of laser surface texturing on transitions in lubrication regimes,” *Tribol. Int.*, vol. 38, no. 3, pp. 219–225, Mar. 2005.

[31] R. Rahmani, I. Mirzaee, A. Shirvani, and H. Shirvani, “An analytical approach for analysis and optimisation of slider bearings with parallel textures,” *Tribol. Int.*, vol. 43, no. 8, pp. 1551–1565, Aug. 2010.

[32] G. Ryk and I. Etsion, “Testing piston rings with partial laser surface texturing for friction reduction,” *Wear*, vol. 261, no. 7–8, pp. 792–796, Oct. 2006.

[33] I. Etsion, “Improving tribological performance of mechanical components by laser surface texturing,” *Tribol. Lett.*, vol. 17, no. 4, pp. 733–737, Nov. 2004.

[34] D. Shen *et al.*, “Numerical optimization of texture shape for parallel surfaces under unidirectional sliding,” *Tribol. Int.*, vol. 82, pp. 1–11, Feb. 2015.

[35] U. Pettersson and S. Jacobson, “Influence of surface texture on boundary lubricated sliding contacts,” *Tribol. Int.*, vol. 36, no. 11, pp. 857–864, Nov. 2003.

[36] D. Adjemout, F. J. Profito, and H. L. Costa, “Friction reduction and durability improvement by multi-objective optimization of plateau honing,” *Tribol. Int.*, vol. 151, p. 106448, Nov. 2020.

- [37] D. Hu and Y. Zhang, "Machine learning assisted investigation of tribological properties of Ti-6Al-4V alloy," *Tribol. Int.*, vol. 145, p. 106132, May 2020.
- [38] E. Tomanik, "Modelling the hydrodynamic support of cylinder bore and piston rings with laser textured surfaces," *Tribol. Int.*, vol. 59, pp. 90–96, Mar. 2013.
- [39] M. Arghir, N. Roucou, M. Helene, and J. Frene, "Theoretical analysis of incompressible laminar flow in a macro-roughness cell," *ASME J. Tribol.*, vol. 125, no. 2, pp. 309–318, Apr. 2003.
- [40] I. Etsion, "A laser surface textured parallel thrust bearing," *Tribol. Trans.*, vol. 46, no. 3, pp. 397–403, 2003.
- [41] B. N. Chichkov *et al.*, "Femtosecond, picosecond and nanosecond laser ablation of solids," *Appl. Phys. A*, vol. 63, no. 2, pp. 109–115, Aug. 1996.
- [42] D. Pham, S. Dimov, and P. Petkov, "Laser milling of ceramic components," *Int. J. Mach. Tools Manuf.*, vol. 47, no. 3–4, pp. 618–626, Mar. 2007.
- [43] C. Gachot *et al.*, "Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry," *Tribol. Lett.*, vol. 49, no. 1, pp. 193–202, Jan. 2013.
- [44] C. E. Emmelmann, W. Schomaker, M. Biermann, and K. Hensch, "Closed-loop controlled laser structuring," *Phys. Procedia*, vol. 41, pp. 870–878, 2013.
- [45] M. Hua *et al.*, "Tribological property of a lubricant-infused laser textured surface under starved lubrication," *J. Mater. Res. Technol.*, vol. 9, no. 5, pp. 9937–9946, Sep. 2020.
- [46] H. L. Costa and I. M. Hutchings, "Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding," *Tribol. Int.*, vol. 40, no. 8, pp. 1227–1238, Aug. 2007.
- [47] H. L. Costa and I. M. Hutchings, "Effects of die surface patterning on lubrication in strip drawing," *J. Mater. Process. Technol.*, vol. 209, no. 3, pp. 1175–1180, Feb. 2009.
- [48] G. Ryk, Y. Kligerman, I. Etsion, and A. Shinkarenko, "Experimental investigation of partial laser surface texturing for piston-ring friction reduction," *Tribol. Trans.*, vol. 48, no. 4, pp. 583–588, 2005.
- [49] T. Ronen, D. Etsion, and Y. Kligerman, "Friction-reducing surface texturing in reciprocating automotive components," *Tribol. Trans.*, vol. 44, no. 3, pp. 359–366, 2001.
- [50] N. Richardson, "In-cylinder friction reduction using a surface finish optimization technique," *SAE Technical Paper* 2004-01-0603, 2004.