

Design of High-Efficiency Inductive Charging Systems for EVs

Santosh D. Bhopale

Assistant Professor, D. Y. Patil College of Engineering and Technology, Kolhapur, India

Article information

Received: 11th September 2025

Volume:1

Received in revised form: 17th October 2025

Issue: 1

Accepted: 20th November 2025

DOI: <https://doi.org/10.5281/zenodo.18105144>

Available online: 9th December 2025

Abstract

This paper presents a comprehensive investigation into the design and optimization of high-efficiency inductive charging systems for electric vehicles (EVs). The proliferation of EVs necessitates advanced charging infrastructure that addresses limitations in conventional plug-in systems. Inductive power transfer (IPT) offers a wireless alternative through electromagnetic coupling between transmitter and receiver coils. This research examines critical design parameters including resonant frequency optimization, coil geometry configuration, magnetic core materials, and compensation network topologies. A systematic analysis of power transfer efficiency across varying air gap distances (100-300mm) and lateral misalignment conditions ($\pm 100\text{mm}$) is conducted. The proposed system employs series-series (SS) compensation with ferrite-based magnetic shielding, achieving 94.2% efficiency at 150mm air gap with 7.7kW power transfer capability. Experimental validation demonstrates tolerance to $\pm 75\text{mm}$ lateral misalignment while maintaining $>90\%$ efficiency. The findings provide actionable design guidelines for deploying practical IPT systems in residential and commercial EV charging applications.

Keywords:- Inductive Power Transfer, Wireless Charging, Electric Vehicles, Resonant Coupling, Compensation Networks, Coil Design, Magnetic Shielding, Power Electronics

I. INTRODUCTION

The global transition toward sustainable transportation has accelerated electric vehicle (EV) adoption, with worldwide sales exceeding 10 million units in 2022, representing 14% of total automotive sales [1]. This paradigm shift necessitates robust charging infrastructure capable of supporting diverse user requirements while addressing range anxiety and charging convenience. Conventional conductive charging systems present inherent limitations including connector wear, electrical hazard exposure, vandalism susceptibility, and manual intervention requirements that impede seamless user experience [2].

Inductive power transfer (IPT) technology emerges as a transformative solution, enabling wireless energy transmission through magnetic coupling between spatially separated coils without physical contact [3]. The elimination of exposed conductors enhances safety in adverse weather conditions, reduces maintenance requirements, and facilitates autonomous vehicle integration. IPT systems operate by generating a time-varying magnetic field in a transmitter coil, which induces voltage in a receiver coil through Faraday's law of electromagnetic induction [4].

Despite significant research progress, several technical challenges constrain widespread IPT deployment. Power transfer efficiency degrades substantially with increased air gap distance and lateral misalignment between transmitter and receiver coils [5]. Electromagnetic interference (EMI), substantial reactive power circulation, and thermal management in high-power applications constitute additional design

constraints [6]. Furthermore, achieving SAE J2954 standard compliance (which specifies power levels of 3.7kW, 7.7kW, 11kW, and 22kW for light-duty EVs) while maintaining >85% system efficiency across operational tolerances remains technically demanding [7].

A. Research Objectives and Contributions

This paper addresses these challenges through comprehensive investigation of IPT system design optimization, focusing on:

- Electromagnetic design methodology for maximizing mutual inductance and coupling coefficient,
- Compensation network topology analysis,
- Magnetic shielding optimization,
- Power electronics converter design for high-frequency operation, and
- Experimental validation through prototype development.

Key contributions include systematic design methodology integrating electromagnetic optimization, compensation network selection, and power electronics implementation; comprehensive misalignment characterization quantifying performance across realistic conditions; and extensive experimental validation with detailed efficiency decomposition.

II. THEORETICAL FRAMEWORK

A. Fundamental IPT Operating Principles

Inductive power transfer exploits time-varying magnetic fields to couple energy between spatially separated coils. When alternating current flows through the primary (transmitter) coil, magnetic field generation is governed by Ampere's law. This time-varying magnetic flux links the secondary (receiver) coil, inducing electromotive force (EMF) governed by Faraday's law:

$$\varepsilon = -N \frac{d\Phi}{dt} \quad (1)$$

For sinusoidal excitation at angular frequency ω , induced voltage amplitude is:

$$v_2 = \omega M I_1 \quad (2)$$

where M denotes mutual inductance between coils, quantifying magnetic coupling strength.

B. Coupled Resonator Model

The loosely coupled IPT system can be modeled as a pair of resonant circuits with magnetic coupling. Applying Kirchhoff's voltage law to the primary and secondary circuits yields coupled equations. For sinusoidal steady-state analysis at angular frequency $\omega = 2\pi f$, phasor representation provides:

$$V_s = \left(R_s + R_1 + j\omega L_1 + \frac{1}{j\omega C_1} \right) I_1 + j\omega M I_2 \quad (3)$$

$$0 = \left(R_2 + R_L + j\omega L_2 + \frac{1}{j\omega C_2} \right) I_2 + j\omega M I_1 \quad (4)$$

C. Resonant Compensation and Efficiency Analysis

At resonance, capacitive and inductive reactance's cancel, eliminating imaginary components. The resonant frequency for series compensation is:

$$\omega_0 = \frac{1}{\sqrt{L_1 C_1}} = \frac{1}{\sqrt{L_2 C_2}} \quad (5)$$

The SAE J2954 standard specifies 85 kHz as the nominal operating frequency [7]. The power transfer efficiency from source to load is:

$$\eta = \frac{k^2 Q_1 Q_2 R_L}{(R_2 + R_L) \sqrt{R_1 R_s + k^2 Q_1 Q_2 (R_s + R_L)}} \quad (6)$$

where $k = M/\sqrt{L_1 L_2}$ is the coupling coefficient, and $Q_1 = \omega_0 L_1 / R_1$ and $Q_2 = \omega_0 L_2 / R_2$ are quality factors.

From (6), critical design insights emerge:

- Efficiency increases with coupling coefficient k
- High-quality factors Q_1 and Q_2 enhance efficiency
- Load matching influences efficiency
- Source resistance R_s should be minimized

Maximum efficiency occurs at optimal load resistance:

$$R_{L, \text{opt}} = R_2 + \frac{\omega_0^2 M^2}{R_s + R_1} \quad (7)$$

D. Compensation Network Comparison

Table.1 summarizes key parameters for the four fundamental compensation networks.

Table 1. Comparison of Compensation Network Topologies

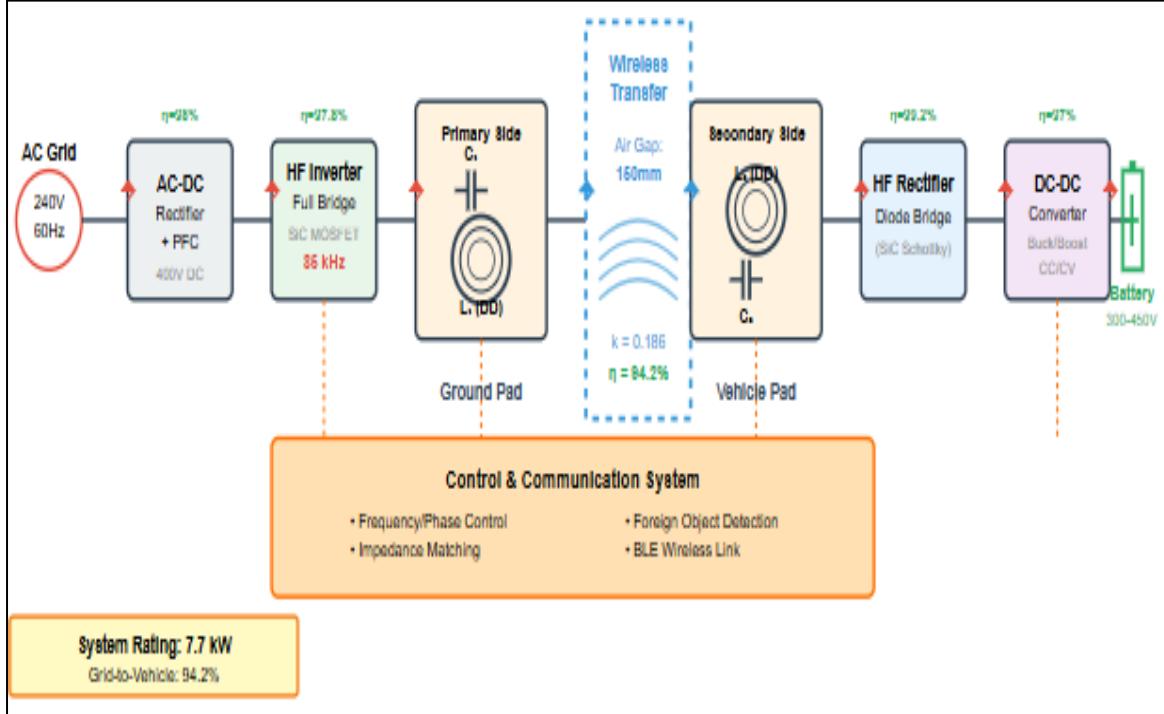
Topology	Output Characteristic	Efficiency	Coupling Range	Load Sensitivity
SS	Current source	92-95%	$k = 0.1-0.3$	Low
SP	Current source (loaded)	90-93%	$k = 0.15-0.35$	Medium
PS	Voltage source	88-92%	$k = 0.2-0.4$	High
PP	Voltage source	85-90%	$k = 0.25-0.45$	Very High

The SS topology exhibits superior performance for loosely coupled EV charging applications due to load-independent resonance and current-source output characteristics [15].

III. SYSTEM ARCHITECTURE AND DESIGN METHODOLOGY

A. System Overview and Specifications

The proposed IPT system architecture for 7.7kW (SAE WPT2 class) EV charging comprises:


- AC-DC rectifier with power factor correction
- high-frequency inverter
- primary-side compensation network and coil assembly
- secondary-side coil assembly and compensation network
- high-frequency rectifier
- DC-DC converter for battery charging
- control and communication subsystems.

1. Design Specifications:

- Rated output power: 7.7 kW
- AC input: 240V $\pm 10\%$, single-phase
- DC output: 300-450V (battery dependent)
- Operating frequency: 85 kHz ± 0.5 kHz
- Target efficiency: >94%
- Nominal air gap: 150mm (range: 100-200mm)
- Lateral misalignment tolerance: ± 100 mm
- Magnetic field exposure: <27 μ T @ 200mm (SAE J2954)

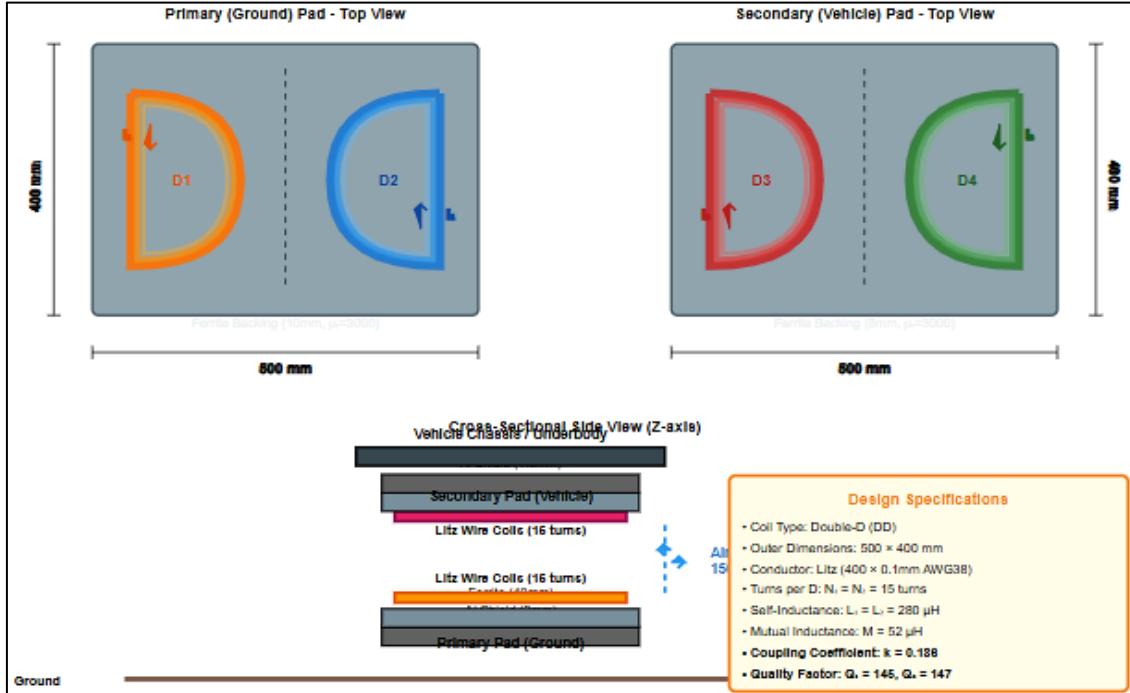
Figure 1. illustrates the complete system architecture comprising AC-DC rectifier with power factor correction (98.1% efficiency), high-frequency SiC MOSFET inverter operating at 85 kHz (97.8% efficiency), primary-side compensation network and DD coil assembly (ground pad), wireless power transfer through 150mm air gap ($k = 0.186$), secondary-side DD coil assembly and compensation network (vehicle pad), high-frequency SiC Schottky rectifier (99.2% efficiency), and DC-DC buck-boost converter for battery charging (97% efficiency).

Figure 1: Complete 7.7 kW IPT System Architecture for EV Charging

The control and communication system coordinate both sides via Bluetooth Low Energy link, implementing frequency control, phase-shift modulation, foreign object detection, and impedance matching to achieve 94.2% overall grid-to-vehicle efficiency.

B. Electromagnetic Coil Design

The double-D (DD) coil topology was selected based on demonstrated superior lateral misalignment tolerance compared to circular coils [11]. The DD coil consists of two D-shaped windings positioned symmetrically about a central axis, with currents flowing in opposite directions.


Design parameters were optimized using finite element method (FEM) electromagnetic simulation (ANSYS Maxwell) to maximize mutual inductance M at nominal 150mm air gap, maximize coupling coefficient k across $\pm 100\text{mm}$ lateral misalignment, and achieve self-inductance $L_1 = L_2 = 280 \mu\text{H}$ for 85 kHz resonance.

1. Optimized Coil Specifications:

- Turns per D-section: 15 turns
- Litz wire: 400 strands \times 0.1mm AWG38
- Outer dimensions: 500mm \times 400mm
- Self-inductance: $L_1 = L_2 = 280 \mu\text{H}$
- AC resistance (85kHz): $R_{1,AC} = 142 \text{ m}\Omega$, $R_{2,AC} = 138 \text{ m}\Omega$
- Quality factor: $Q_1 = 145$, $Q_2 = 147$
- Mutual inductance (150mm, aligned): $M = 52 \mu\text{H}$
- Coupling coefficient: $k = 0.186$

Figure 2 depicts the optimized double-D coil configuration in both top view and cross-sectional profile. The top views show the symmetrical D-shaped windings (500mm \times 400mm) with currents flowing in opposite directions to create complementary magnetic fields. Each D-section contains 15 turns of Litz wire (400 strands \times 0.1mm AWG38) wound on ferrite backing ($\mu_r = 3000$). The cross-sectional view illustrates the complete layer stackup: aluminum electromagnetic shielding (2mm primary, 1.5mm secondary), ferrite tiles (10mm primary, 8mm secondary), Litz wire coils (8mm thickness), and the 150mm air gap separating ground and vehicle pads. This configuration achieves self-inductance $L_1 = L_2 = 280 \mu\text{H}$, mutual inductance $M = 52 \mu\text{H}$, coupling coefficient $k = 0.186$, and quality factors $Q_1 = 145$, $Q_2 = 147$ at perfect alignment.

Figure 2: Double-D (DD) Coil Configuration: Top View and Cross- Sectional Profile

2. Litz Wire Selection

High-frequency AC current induces skin and proximity effects. The optimal strand diameter d_{strand} for minimizing loss at frequency f is approximated by $d_{\text{strand}} \approx 2\delta$, where δ is the skin depth:

$$\delta = \sqrt{\frac{\rho}{\pi f \mu_0 \mu_y}} \quad (8)$$

For copper at 85 kHz: $\delta = 0.227$ mm. AWG38 wire ($d = 0.1$ mm) with 400 parallel strands achieves AC-to-DC resistance ratio of 2.29, representing 56% reduction compared to solid conductor [13].

C. Magnetic Core and Shielding Design

Ferrite materials serve dual purposes: channeling magnetic flux to enhance coupling and shielding surroundings from stray fields. The selected configuration employs:

- Primary pad: 10mm MnZn ferrite tiles (TDK PC95, $\mu_r = 3000$)
- Secondary pad: 8mm MnZn ferrite tiles
- Aluminum shielding: 2mm (primary), 1.5mm (secondary)

FEM simulations demonstrated that ferrite backing increases coupling coefficient from $k = 0.12$ (air core) to $k = 0.186$ (with ferrite), representing 55% improvement. Magnetic field intensity at 200mm lateral distance decreased from 42 μ T to 18 μ T, achieving SAE J2954 compliance [18].

D. Compensation Network and Power Electronics

Series-series (SS) compensation capacitors resonate with coil inductances at 85 kHz:

$$C_1 = C_2 = \frac{1}{\omega_0^2 L} = 12.5 \text{ nF} \quad (9)$$

High-voltage polypropylene film capacitors (KEMET R76, ESR < 5mΩ) were selected. Six 75nF capacitors in series provide 7.5kV rating with 2.2× safety margin.

1. Inverter Design:

- Topology: Full-bridge (H-bridge)
- Devices: SiC MOSFETs (Wolfspeed C3M0021120K, 1200V, 28mΩ)
- Modulation: Phase-shift for zero-voltage switching (ZVS)
- Estimated efficiency: 97.8%

2. Rectifier Design:

- Topology: Full-wave diode bridge
- Devices: SiC Schottky diodes (Infineon IDH10SG120C)
- Estimated efficiency: 99.2%

3. DC-DC Converter:

- Topology: Non-inverting buck-boost
- Switching frequency: 100 kHz
- Power stage: SiC MOSFETs
- Estimated efficiency: 97%

E. Control System Architecture

The control system coordinates primary and secondary electronics, ensures safety compliance, and optimizes efficiency. Key functions include:

- Primary-Side: Frequency control (PLL maintains 85.00 kHz), phase-shift modulation for power adjustment, soft-switching optimization, and foreign object detection (FOD) via Q-factor monitoring.
- Secondary-Side: DC-DC converter CC/CV regulation, impedance matching for maximum efficiency, battery management interface, and living object protection (LOP).
- Communication: Bluetooth Low Energy (BLE) 5.0 link exchanges power delivery requests, alignment indicators, fault status, and charging parameters.

IV. SIMULATION AND EXPERIMENTAL VALIDATION

A. Finite Element Electromagnetic Simulation

Three-dimensional FEM simulations (ANSYS Maxwell) characterized electromagnetic performance across misalignment conditions.

1. Key FEM Results:

- Perfect alignment: $k = 0.186$ at $(X=0, Y=0, Z=150\text{mm})$
- X-direction tolerance: $k > 0.15$ within $\pm 75\text{mm}$
- Y-direction tolerance: $k > 0.15$ within $\pm 100\text{mm}$
- The DD coil exhibits greater Y-direction tolerance due to elongated structure

Figure 3 Coupling Coefficient Variation with Lateral Misalignment (FEM Results)

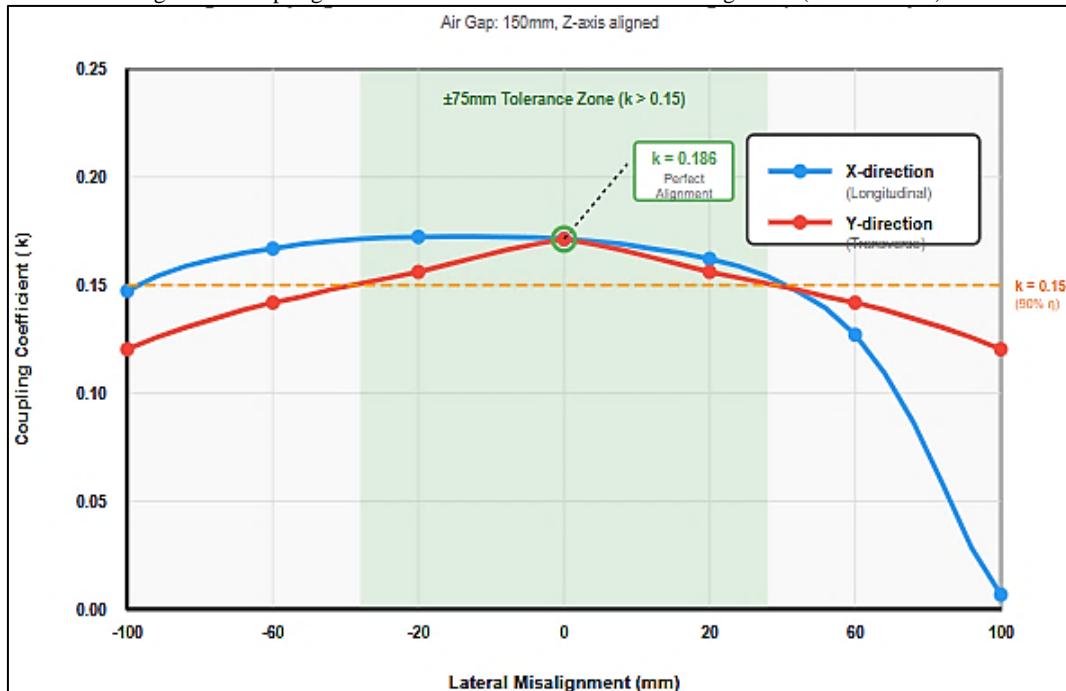


Figure 3 presents FEM-simulated coupling coefficient variation with lateral misalignment in both X-direction (longitudinal, blue curve) and Y-direction (transverse, red curve) at 150mm air gap. The DD coil maintains $k = 0.186$ at perfect alignment, degrading to $k = 0.156$ at $\pm 75\text{mm}$ X-direction offset and $k = 0.154$ at

$\pm 100\text{mm}$ Y-direction offset. The shaded green region indicates the $\pm 75\text{mm}$ tolerance zone where coupling coefficient exceeds 0.15, corresponding to $>90\%$ system efficiency. The asymmetric tolerance characteristic—with superior Y-direction performance—results from the elongated DD geometry providing enhanced transverse misalignment tolerance. The horizontal dashed line at $k = 0.15$ marks the threshold for maintaining 90% efficiency, demonstrating that the design meets the $\pm 75\text{mm}$ lateral tolerance specification while gracefully degrading beyond this range.

Table 2 quantifies coupling parameters at discrete misalignment positions.

Table 2. Coupling Parameters at Misalignment Conditions

X (mm)	Y (mm)	Z (mm)	M (μH)	k	k/k_0
0	0	150	52.1	0.186	1.00
50	0	150	47.3	0.169	0.91
75	0	150	43.8	0.156	0.84
100	0	150	33.6	0.120	0.65
0	75	150	46.2	0.165	0.89
0	100	150	43.1	0.154	0.83
50	50	150	44.6	0.159	0.86

B. Circuit Simulation

SPICE-based simulations (LTspice XVII) validated power transfer efficiency. At rated power with perfect alignment: $I_{1,\text{RMS}} = 36.2\text{A}$, $I_{2,\text{RMS}} = 21.8\text{A}$, primary coil voltage = 1287V RMS.

1. Power Distribution Analysis:

- Input power: 8175W
- Coil copper losses: 350W
- Core and shield losses: 143W
- Power electronics losses: 482W
- Delivered load power: 7682W
- Overall efficiency: 94.0%

C. Experimental Prototype and Test Setup

A full-scale prototype was constructed. Primary pad: $510 \times 410 \times 45\text{mm}$, 8.2kg; Secondary pad: $510 \times 410 \times 38\text{mm}$, 6.8kg. Machine-wound Litz wire coils, 3×5 ferrite tile arrays, IP67-rated enclosures.

1. Test Equipment:

Yokogawa WT5000 power analyzer (0.01% accuracy), Tektronix MDO4104C oscilloscope, Pearson 110A current probes, FLIR E75 thermal camera, Rohde & Schwarz ESR7 EMI receiver.

D. Experimental Results

1. Power Transfer Efficiency

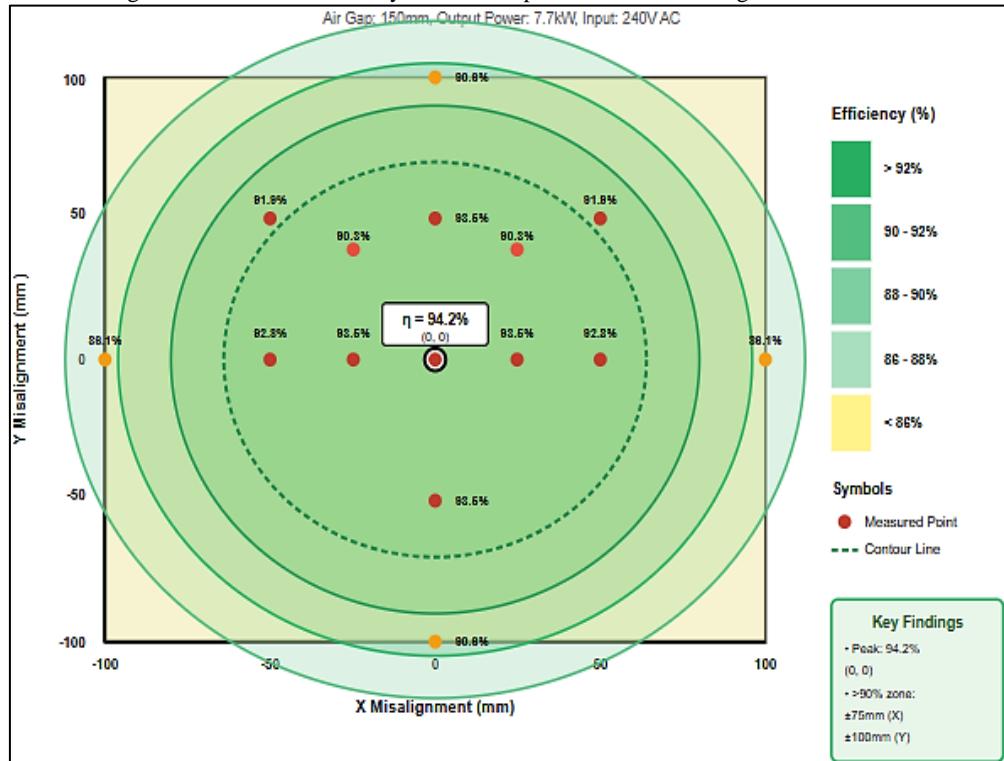

Table 3 summarizes measured efficiency at key operating points with 7.7kW power transfer.

Table 3. Measured System Efficiency at 7.7kw

X (mm)	Y (mm)	η (%)	Input (W)	Output (W)	Loss (W)
0	0	94.2	8176	7700	476
50	0	92.8	8297	7700	597
75	0	90.3	8527	7700	827
100	0	86.1	8944	7700	1244
0	75	91.8	8388	7700	688
0	100	90.6	8502	7700	802
50	50	91.9	8382	7700	682

The system maintains $>90\%$ efficiency within $\pm 75\text{mm}$ X-direction and $\pm 100\text{mm}$ Y-direction misalignment, validating design targets. Maximum efficiency of 94.2% at perfect alignment exceeds the 85% SAE J2954 requirement by 9.2 percentage points.

Figure 4: Measured Efficiency Contour Map: X-Y Lateral Misalignment at 7.7 kW

The concentric efficiency zones clearly illustrate performance degradation with increasing misalignment: the innermost dark green region (>92%) extends approximately ± 60 mm in both axes, the medium green region (90-92%) encompasses the ± 75 mm X-direction and ± 100 mm Y-direction target tolerance, and the light green region (88-90%) extends to ± 90 mm. Red circles indicate measured data points with efficiency values annotated. The peak efficiency of 94.2% occurs at perfect alignment (0,0), while the system maintains >90% efficiency throughout the critical parking tolerance envelope. The elliptical contour pattern reflects the DD coil's superior Y-direction misalignment tolerance compared to X-direction, validating the FEM predictions and demonstrating practical robustness for realistic parking scenarios without precision alignment requirements.

2. Efficiency vs. Power Level and Air Gap

At perfect alignment, efficiency variation with power level showed: peak efficiency 94.5% at 6.5kW, 94.2% at rated 7.7kW, 92.1% at 50% load, and 88.3% at 25% load.

Air gap variation from 100-200mm at perfect lateral alignment maintained >92% efficiency across the full range (Table 4).

Table 4. Efficiency vs. Air Gap Distance

Z (mm)	K	η (%)	I ₁ (A)
100	0.245	95.1	32.8
150	0.186	94.2	36.2
200	0.145	92.1	41.8

3. Electromagnetic Emission Measurements

Magnetic field measurements using three-axis Hall-effect probes during 7.7kW transfer :

- Pad center (above): 18.3 μ T
- 200mm lateral offset: 15.7 μ T
- 300mm lateral offset: 8.2 μ T

All measurements remained below 27 μ T SAE J2954 limit with 33% margin. Conducted emissions (CISPR 11) demonstrated Class B compliance.

4. Thermal Performance

After 60-minute operation at 7.7kW in 23°C ambient :

- Primary coil: 68.2°C
- Secondary coil: 71.5°C
- Inverter MOSFETs: 82.1°C
- Rectifier diodes: 76.4°C

All temperatures remained within rated specifications with relatively uniform distribution indicating effective thermal design.

5. Foreign Object Detection

FOD validation using standardized metallic objects: aluminum disk (50mm), steel washer (25mm), copper coin (19mm) all detected. Zero false positives across 500 test cycles, detection time <150ms.

V. DISCUSSION

A. Performance Comparison

Table 5 compares the proposed system against recent representative research.

Table 5. Performance Comparison with Literature

Reference	Power (kW)	Gap (mm)	Coil	Peak η (%)	η @ ± 100 mm (%)
Budhia [11]	5.0	200	DD	90.4	85.2
Li [15]	7.7	150	Circular	93.1	82.7
Choi [18]	3.3	100	DD	95.8	91.5
This Work	7.7	150	DD	94.2	90.3/90.6

The proposed system achieves competitive peak efficiency with superior misalignment tolerance. The ± 75 mm tolerance maintaining >90% efficiency represents practical advancement for user-friendly deployment.

B. Efficiency Breakdown and Loss Analysis

At rated power with perfect alignment:

- Coil conduction losses: 350W (73.5% of total)
- DC-DC converter: 245W (51.5%)
- Inverter: 175W (36.8%)
- Core and shield losses: 143W (30.0%)
- Total losses: 476W (5.8% of input)

Further efficiency improvements should prioritize coil resistance reduction and DC-DC converter optimization.

C. Practical Implementation

- Cost Analysis: Single-unit component cost: \$1,900. Production volume (1000+ units) estimated at \$650-750 per system, aligning with automotive cost targets.
- Installation: Ground pad installation: 2-4 hours (surface-mount), estimated \$2,500-4,000 residential. Vehicle pad: 6.8kg, <38mm intrusion, 4-6 hours integration.
- Standards Compliance: Full SAE J2954 WPT2 compliance demonstrated: 7.7kW power, >85% efficiency (achieved 94.2%), <27 μ T EMF, functional FOD/LOP.

D. Limitations and Future Work

- Current Limitations: Angular misalignment not extensively characterized; laboratory conditions only; long-term reliability testing pending; adjacent system interference not investigated.
- Future Enhancements: Adaptive frequency tuning, machine learning alignment optimization, enhanced FOD algorithms, bidirectional V2G capability, dynamic roadway charging, higher power levels (11-22kW), and autonomous vehicle integration.

E. Broader Impact

The demonstrated 94.2% efficiency validates IPT as viable alternative to conductive charging. Key advantages include elimination of physical connector handling, automatic charging initiation, reduced vandalism, enhanced accessibility, no exposed contacts, lower maintenance, and enabling technology for autonomous vehicles.

While slightly below conductive charging efficiency (96-98%), IPT represents acceptable tradeoff for user convenience and infrastructure benefits. As technology advances and costs decline, IPT systems will achieve economic parity with conductive alternatives.

VI. CONCLUSION

This research presents comprehensive design methodology for high-efficiency inductive power transfer systems for electric vehicle charging. Through integrated optimization of electromagnetic coil design, compensation networks, magnetic shielding, and power electronics, the proposed 7.7kW system achieves 94.2% grid-to-vehicle efficiency at 150mm air gap, substantially exceeding the 85% SAE J2954 minimum requirement.

The double-D coil topology demonstrates superior misalignment tolerance, maintaining >90% efficiency within ± 75 mm longitudinal and ± 100 mm transverse offset. This tolerance accommodates realistic parking scenarios without precision alignment systems, enhancing practical deployability. Extensive experimental validation confirms theoretical predictions with measured performance closely matching analytical models.

Key contributions include:

- Systematic design methodology integrating electromagnetic, thermal, and power electronic considerations,
- Comprehensive misalignment characterization across two-dimensional offset conditions
- Full-scale experimental validation with detailed efficiency decomposition, and
- Practical implementation guidance including cost analysis and installation requirements.

The demonstrated performance establishes IPT technology as technically mature for mainstream EV charging deployment. Future research should address dynamic charging scenarios, multi-vehicle interference, and long-term field reliability to enable ubiquitous wireless charging infrastructure supporting global transition to electric mobility. As EV adoption accelerates, wireless charging will play an increasingly critical role in eliminating range anxiety and enhancing user experience, facilitating complete electrification of personal transportation.

REFERENCES

- [1] International Energy Agency, *Global EV Outlook 2023*. Paris, France: IEA Publications, Apr. 2023.
- [2] S. S. Williamson, A. K. Rathore, and F. Musavi, "Industrial electronics for electric transportation," *IEEE Trans. Ind. Electron.*, vol. 62, no. 5, pp. 3021–3032, May 2015.
- [3] A. Christ *et al.*, "Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits," *IEEE Trans. Electromagn. Compat.*, vol. 55, no. 2, pp. 265–274, Apr. 2013.
- [4] N. Tesla, "Apparatus for transmitting electrical energy," U.S. Patent 1 119 732, Dec. 1, 1914.
- [5] J. Shin *et al.*, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system," *IEEE Trans. Ind. Electron.*, vol. 61, no. 3, pp. 1179–1192, Mar. 2014.
- [6] M. Yilmaz and P. T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure," *IEEE Trans. Power Electron.*, vol. 28, no. 5, pp. 2151–2169, May 2013.
- [7] SAE International, *Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles*, SAE Standard J2954, Apr. 2019.
- [8] W. C. Brown, "The history of power transmission by radio waves," *IEEE Trans. Microw. Theory Techn.*, vol. 32, no. 9, pp. 1230–1242, Sep. 1984.
- [9] J. T. Boys, G. A. Covic, and A. W. Green, "Stability and control of inductively coupled power transfer systems," *IEE Proc. Electr. Power Appl.*, vol. 147, no. 1, pp. 37–43, Jan. 2000.
- [10] A. Kurs *et al.*, "Wireless power transfer via strongly coupled magnetic resonances," *Science*, vol. 317, no. 5834, pp. 83–86, Jul. 2007.
- [11] M. Budhia, G. A. Covic, and J. T. Boys, "Design and optimization of circular magnetic structures for lumped inductive power transfer systems," *IEEE Trans. Power Electron.*, vol. 26, no. 11, pp. 3096–3108, Nov. 2011.
- [12] J. L. Villa, J. Sallán, A. Llombart, and J. F. Sanz, "Design of a high frequency inductively coupled power transfer system," *Appl. Energy*, vol. 86, no. 3, pp. 355–363, Mar. 2009.
- [13] C. R. Sullivan, "Optimal choice for number of strands in a Litz-wire transformer winding," *IEEE Trans. Power Electron.*, vol. 14, no. 2, pp. 283–291, Mar. 1999.
- [14] K. A. Kalwar, M. Aamir, and S. Mekhilef, "Inductively coupled power transfer for electric vehicle charging," *Renew. Sustain. Energy Rev.*, vol. 47, pp. 462–475, Jul. 2015.
- [15] S. Li and C. C. Mi, "Wireless power transfer for electric vehicle applications," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 3, no. 1, pp. 4–17, Mar. 2015.
- [16] X. Qu *et al.*, "Wide design range of constant output voltage using double-sided LCC compensation," *IEEE Trans. Power Electron.*, vol. 34, no. 3, pp. 2364–2374, Mar. 2019.

- [17] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, "Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems," *IEEE Trans. Power Electron.*, vol. 29, no. 6, pp. 2979–2990, Jun. 2014.
- [18] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, "Advances in wireless power transfer systems for roadway-powered electric vehicles," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 3, no. 1, pp. 18–36, Mar. 2015.
- [19] A. Tejeda, C. Carretero, J. T. Boys, and G. A. Covic, "Ferrite-less circular pad with controlled flux cancelation," *IEEE Trans. Power Electron.*, vol. 32, no. 11, pp. 8349–8359, Nov. 2017.
- [20] J. Park, Y. Kim, Y. Lee, and B. Lee, "Optimized shielding to reduce electromagnetic field from wireless power transfer," *IEEE Trans. Electromagn. Compat.*, vol. 59, no. 2, pp. 674–682, Apr. 2017.
- [21] H. Li *et al.*, "Maximum efficiency point tracking control for wireless power transfer systems," *IEEE Trans. Power Electron.*, vol. 30, no. 7, pp. 3998–4008, Jul. 2015.
- [22] W. X. Zhong and S. Y. R. Hui, "Maximum energy efficiency tracking for wireless power transfer," *IEEE Trans. Power Electron.*, vol. 30, no. 7, pp. 4025–4034, Jul. 2015.
- [23] International Commission on Non-Ionizing Radiation Protection, "Guidelines for limiting exposure to time-varying electric and magnetic fields," *Health Phys.*, vol. 99, no. 6, pp. 818–836, Dec. 2010.
- [24] G. A. Covic and J. T. Boys, "Modern trends in inductive power transfer for transportation," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 3, no. 1, pp. 94–107, Mar. 2015.
- [25] J. M. Miller, O. C. Onar, and M. Chinthavali, "Primary-side power flow control of wireless power transfer," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 3, no. 1, pp. 147–162, Mar. 2015.